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The combinatorics of Gel ' land states which are useful in the graphical unitary 
group approach to many electron correlation problem and spin free quantum 
chemistry is considered. Using operator  theoretic methods it is shown that the 
generators of Gel 'fand states are S-functions. 
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1. Introduction 

In recent years graph theory and combinatorics have been shown to have several 
potentially useful chemical applications. For a review of this topic see the book of 
Balaban [1]. The graphical unitary group approach to many electron correlation 
problem developed by Paldus and expounded by several others is one such 
application [2-10]. This approach essentially speeds up the evaluation of the 
symbolic formulas for CI Hamiltonian matrix elements. It is well known that the 
basis sets for the unitary groups can be described by the Gel ' fand-Tsetl in bases or 
the associated Gel 'fand tableau or Weyl tableau. One of the objectives of this 
paper would be to describe the combinatorics of the enumeration of Gel 'fand 
states by the way of the appropriate generating function techniques. Using 
operator  theoretic methods it is shown that the generators of Gel 'fand states are 
Schur functions. 

Gel 'fand states have been independently described and used by Matsen [11] in 
spin free quantum chemistry. Most of these problems involve or require the 
enumerat ion of Gel 'fand states. The usual genealogical construction of spin 
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functions [ 12] can be achieved using Gel 'fand states. Further, using the represen- 
tation theory of generalized wreath products developed by the author [13] and 
operator theoretic methods [ 14], it is possible to compose S-functions to what we 
call generalized plethysms which are generalizations of plethysms outlined in 
Read's [15] paper. When such generalizations have been accomplished with the 
group theoretical concepts developed by the author [ 16] in NMR spectroscopy, it 
would be possible to elegantly generate NMR spin functions. More over, these 
generalized plethysms will have applications in the enumeration of non-rigid 
isomers and NMR signals, the essential basic foundations of which have been laid 
in the papers [ 17-19]. This paper uses operator theoretic formulations of William- 
son [20] for abelian characters which have been recently generalized to nonabel- 
ian characters by Merris [21]. Some of the elementary concepts used in this paper 
can be found in the books [22-24] and the paper of Knuth [25]. A correspondence 
between Gel'fand states and the irreducible representations of the symmetric 
groups can be found in the paper of Moshinsky [26]. In an earlier paper the author 
[27] introduced operator methods and combinatorics in symmetry adaptation. 
Sect. 2 describes the preliminaries and definitions, Sect. 3 discusses imminants, 
S-functions and group characters; in Sect. 4 we give operator theoretic formula- 
tions and Sect. 5 concludes with the generation of Gel 'fand states. 

2. Definitions and Preliminaries 

2. I. Partitions, Ge l ' l and  States, Ge l ' fand-Tse t l in  Tableau 

An rn-tuple (al, t;r . . . . .  a m )  satisfying 

/'~ = O L 1  - ~ O / 2 - ~  " " " + O / m ,  O/1 ~---O~2 ~ "  " " ~ -O/m ~ 1 

is called a partition of an integer n into rn parts. With any partition of an integer 
we can associate a diagram in which the ith component of the m-tuple defined 
above is represented by the ith row containing ai squares. For example, Fig. 1 
shows the diagram (known as Young's diagram) associated with the partition 
(3, 1, 1). (In Fig. 1, squares are filled with certain integers and their significance 
can be seen in the ensuing discussion). The number of partitions of an integer n 
into m parts is denoted as P~ and the total number of partitions of n is P,. The 
generating functions for 19 and P~ are given by the expressions 1 and 2. 

GF1 = (1 -x)-~(1 -xZ)-~(1 - - X 3 )  - 1  " ' "  (1) 

GF2 = x "n (1 --x)-l(1 -x2)  -1 �9 �9 �9 (1 - x m )  -1. (2) 

The coefficients of x n in (1) and (2), give P,  and P~,  respectively. For a proof, see 
Berge [23]. With every partition a we can associate a conjugate partition 
a * = (o/*, a*  . . . . .  a * )  which is obtained by rotating the Young's diagram of a 

  1 1 2 1  
Fig. 1. A generalized Young tableau of the type [ 12223] which corresponds 
to the partition 3 + 1 + 1 
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Fig. 2. A standard tableau associated with the partition 3 + 2 + 1 
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about the diagonal. For example, the conjugate of the partition 3 + 2 + 1 + 1 is 
4 + 2 + 1. Given a partition of the integer n we can associate a standard tableau by 
filling each square with integers 1, 2 . . . . .  n such that the integers are strictly in 
increasing order from left to right and top to bottom. For example, a standard 
tableau associated with the partition 3 + 2 + 1 is shown in Fig. 2. 

A square tableau ((h~)) also known as hook graph, associated with a partition is 
defined by 

h} = l + ( a i - j )  + (a* - i ) .  (3) 

For example, the square tableau associated with the partition 3 + 2 + 1 is shown in 
Fig. 3. 

5 3 1 

3 1 

Fig. 3. The square tableau or the hook graph associated with the partition 3 + 2 + 1 1 

Frame, Robinson and Thrall [29] proved an important theorem which relates the 
number of standard tableaus associated with a partition and the square tableau 
associated with this partition. In fact, according to this theorem, the number of 
standard tableaus N (al . . . . .  am), is given by 

N(al, a2,... ,am)=n!/IIh . 
- -  i , . i  

There is a correspondence between the theory of partitions and the representation 
theory of the symmetric groups. With every irreducible representation of S n  we 
can associate a partition of the integer n and there are exactly Pn irreducible 
representations in S,. The dimension of an irreducible representation is the 
number of standard tableaus that can be constructed with the associated partition. 
The characters of the irreducible representations of Sn are obtainable using the 
diagrams associated with the partition. For a review of this topic, see Hamermesh 
[28]. 

A generalized Young tableau also known as Weyl tableau is defined as a tableau 
containing integers chosen from the set {1, 2 . . . . .  n} such that integers are in 
nondecreasing order in any row and they are in strictly increasing order in any 
column. For example, a generalized Young tableau is shown in Fig. 1. A 
generalized Young tableau (GYT) containing h l integers of the type a~, ~2 
integers of the type a2 . . . . .  h, integers of the type a t can be denoted as 

h l  3- 2 A t 
a i a 2 " �9 �9 a t  ]. There are many ways one can form GYT's. For example, all 

GYT's of the type [122232] are shown in Fig. 4. 
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lrl  r 11 
2 3 3 2 2 

3 3 

Fig. 4. All generalized Young  tableaus of the shape [ 122232] which correspond to the partitions of the  
integer 6 

The basis vectors of the irreducible representat ions of U(n) can be uniquely 
labeled by a triangular pat tern defined by Gel ' fand known as a Gel ' fand-Tset l in  
tableau shown below. 

rmn  rml m2n m n mnn l 
mn-1 / ~ l , n - 1  " " " mn-l,n-1 

[ m ]  = = 

Lm J 
m l  m l l  

The integers in this triangular array satisfy the following condition: 

mi,j ~mi ,  j - -  l ~--mi+ld, 

for al l i  =j  . . . . .  n - l , j  = 2 ,  3, �9 �9 �9 n. 

There  is a one- to-one  correspondence between a Gel ' fand-Tset l in  tableau and a 
G Y T  of appropriate  shape. The first row of the given Gel ' fand-Tset l in  tableau 
determines the Young diagram. Then one fills integers from the set {1, 2 . . . . .  n} 
such that in the ith row of the diagram, i is filled in the first rail boxes, i + 1 in the 
next rni,i+l- mii boxes etc., until n is filled in the last m~. -mi ,n-x boxes. 

The GYT ' s  pertaining to N-electron problem can contain at most  two columns 
because of the Pauli principle. Paldus calls the Gel ' fand-Tset l in  tableaus asso- 
ciated with electron problems the electronic tableaus. The associated A B C  
tableaus introduced by Paldus as a short hand notation for electronic Gel ' fand 
tableaus are called Paldus tableaus. Thus, the Gel ' fand-Tset l in  tableau is charac- 
terized by a n x 3 matrix which gives the number  of 2's, 1 's and zeros in a given row 
of Gel ' fand tableaus. In fact, in this case the corresponding GYT ' s  can be 
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characterized by a-/3 tableaus which are obtained by generating GYT' s  with a ' s  
and/3 ' s  with a lexical ordering/3 > c~. That  is, in any row a ' s  and/3 ' s  occur in 
non-decreasing order and in any column o~'s and/3 's  occur in strictly increasing 
order. Consequently,  there can be at most 2 rows. The labels c~ and/3  can be 
associated with the spin up and spin down of the electron, respectively. 

2.2. Cycle Indices, Patterns and  Generating Functions 

Let  G be a group acting on a discrete set D. Let  F denote  the set of all maps f rom 
the set D to another  discrete set R. G also acts on F in that if f c F then 

g( f ( i ) )  = f ( g - l i )  for every i ~D.  

Define the cycle index of G to be 

1 bl b2 b 
PG = ~ ~ .~1-~,2 . . . X n ,  

IIJI g~G 

b~ b 2 b n where x 1 x2 �9 �9 �9 Xn is a representat ion of a typical permutat ion g ~ G which has 
bl cycles of length 1, b2 cycles of length 2, etc. 

Two maps fl ,  f2 ~ F  are said to be G-equivalent  if there exists a g ~ G such that 

f l (d )  =f2(gd)  for every d c D .  

All equivalent maps form a G-equivalence class which is called a pattern.  Thus G 
acts on F and divides F into patterns. 

Let w be a function w: R -~ K, where K is a field of characteristic zero. Then for 
each f ~ F we can define a map W : F ~ K which is also a constant on the orbits 
resulting f rom the action of G on F as follows: 

d 
w ( f )  = II w(f(i)).  

i= l  

Pdlya [30] showed that the configuration counting series which is a generating 
function for patterns is obtained by the following substitution in the cycle index: 

G . F . =  PG(X k - - ~ r ~  w k  ( r ) ) .  

Coefficient of a typical t e r m  w b l ( r l ) w b 2 ( r 2 )  �9 �9 �9 gives the number  of patterns with 
the weight wb'(r l )w b2(r2) �9 �9 �9 . 

3. Imminants, S-Functions and Group Characters 

Let [aij] be a matrix of order  n x n. Let  s be a permutat ion belonging to the group 
Sn of the type el, ea . . . . .  en of the numbers  1, 2 . . . . .  n. Let  Ps be the product  

Ps = a l e la2e2  " " " anew. 
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Let X (~) be the character associated with the irreducible representation [h ] of Sn 
corresponding to the partition (h) = (hi, A2 . . . . .  An) of n. Then the imminant of 
the matrix [aii] which corresponds to the partition (A) is given by 

]aql (x) = Y.X(A)(s)Ps 

where the sum is taken over all n! permutations of S,. Note that for (A)= 
(n, 0, 0 . . . . .  0), ]aij ](x ) is the symmetrizer and for (A) = (1, 1, 1 , . . . ,  1), [ai i ](x) is the 
antisymmetrizer. 

Consider a symmetric function sr of the quantities a l ,  a2 . . . . .  a~, defined by 

r 
Sr : Oil. 

i ~ 1  

Let Zr be the matrix defined by 

s l  1 0 

S 2 S 1 2 

$3 $2 $1 

S r - 1  S r - 2  

Sr Sr - 1 

~ 1 7 6 1 7 6  0 

0 . . .  0 

3 0 . . .  0 

S 1 r-- 

$2 S l  

If (A) is a partition (h) -= (h 1, A2 . . . . .  Ap) of r with p components in descending 
order then the Schur function also known as S-function {h} = {h 1, A 2 , . . . ,  A v} is 
defined by the following expression: 

{A}:Ilzrl (" 

where [Zr [(x) is the imminant of the matrix Zr associated with the partition (A). Let 
hr and ar denote the S-functions which cgrrespond to the partitions (r) and (10, 
respectively. It can be shown that the above expression for the S-function {h } can 
be reduced to another convenient form. Let [C[ be the order of conjugacy class C 
of the group S, and let X(~ ) be the character of [h ] which corresponds to the class 
C. Then it can be shown that 

{A}=!Z 
r! c IClx )sc 

where Sc is defined by 

- -  o b l o b 2 ~ b 3  . . . 
S C  - - , ~ 1  '~2 a 3  

if the conjugary class C has the cycle representation of bl cycles of length 1, b2 
cycles of length 2, etc. ICI can be obtained by Cayley's counting principle as 

r! 
[ C I -  lb ,b l !2b2b2! . .  " 
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Let  us illustrate S-functions with examples from the group $3. The symmetric 
group $3 has three irreducible representations associated with partitions (3), (2, 1) 
and (13). From the character table of $3 it can be seen that 

{ 3 }  1 3 
= g ( S l  + 3 S l S 2 +  2 S 3 )  

{ 2 ,  1 }  1 3 = g(2s I - 2s3 )  

{ 1 3 }  1 3 = ~(s 1 - 3s is2  + 2S3) 

with 

s k  = 

S-functions can be obtained as quotient of determinants using the Frobenius'  
formula which we shall briefly discuss. Let  

A ( a  l ,  a 2 ,  . . . , a m )  .~_ i i  ( a r  _ a s ) ( r  < s  ) ~i~ }_ m - 1  m - 2  . . . ~ ~.~ a l a 2  o l i n - 1 .  

Then the Frobenius formula which relates so, A ( a ~ , . . . ,  an)  and the character is 
shown below. 

S c A ( a l ,  Oe2, . , a m )  v , _ _  (x)  X l + n - 1  X 2 + n - 2  X,~ �9 . = 2 . , : t :  ~ ' C  OL 1 OL2 . . . OL n . 

From this it can be easily shown that 

2 • I l  a +.- ,  
i 

2.. I l f f i  
i 

where 

rt 
[ C I -  lb~ba[2b~b2! . . . 

if the conjugacy dass C contains b~ cycles of length 1, b2 cycles of length 
2 . . . .  , etc. The summation is taken with respect to all permutations, the negative 
sign is for odd permutations. 

Generating functions can be obtained for S-functions as follows. Let  F ( x ) =  
I+Y~ h,,x r where h~ is the S-function which corresponds to the partition (r). 
Consider the S-function of the form {n, p~, P2 . . . . .  p,} with n ---p~ ->P2 >-" �9 �9 ->P~. 
Let  g ( x )  be defined as follows: 

x i 

h p l - 1  

g(x)= hp2-2 

h p l -  i 

X i - 1  . . �9 

hpl �9 . . h p l + i _  1 

h p 2 _  1 �9 . . h p 2 + i _  2 

hp~_i + l . . .  hp~ 

Then F ( x ) g ( x )  is a generating function for S-functions of the form 
{n, Pl, P 2 , . . . ,  Pi}. The coefficient of x n+i in F ( x ) g ( x )  gives {n, Pl, P2 . . . . .  Pl}. 
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The above methods of generating the S-functions amount  to using the cycle 
indices of smaller groups. Let  Ps, be the cycle index of the symmetric group Si. 
Then the S-function {n ; pl,  P2 �9 ' �9 Pn} is precisely the determinant,  det (P&,,-i+,), 
with the convention Pso = 1 and Ps< = 0 for a positive integer l [31]. Let  us 
illustrate this with the S-function {6; 4, 1, 1}. This is shown below as a determinant  

Ps4 Ps,  Ps6 

{6;4 ,1 ,1}=/~o  Psi Ps2 
/'So Ps, 

2 
z P s  ins4 -Ps2Ps4  - P s l P s 5  +Ps6 

Psi = s l  

~(s l + s2) P s 2 ~  1 2 

Ps,  = ~ ( s  4 + 6s 2s2 + 8s ls3 + 3s ~ + 6s4) 

a26(sl + 10s3s2+ 20s~s3+ 15sis 2 +30sas4 es5 = i 5 

+2082S3 q- 24Ss) 

1 6 ps6=776(s1+15S 482 + 3 2 2 40s 1s3 + 45s is 2 + 90s ~s4 

+120SlS283 + 144SlS5 + 15S 3 +90S2S4 

+40s32 + 120s6). 

Substituting these expressions in the determinant  expansion we find that 

{6; 4, 1, 1} 1 6 = 7f6 ( lOs ,  + 30s4s2 + 40s 3s3 - 90s~s~ 

- 120s lszs3 - 30s~ + 40s 2 + 120s6). 

4. Operator Theoretic Formulations 

With G, D,  R and F as defined in Sect. 2.2, let us generalize the formulations in 
Sects. 2 and 3 by opera tor  theoretic methods.  Let  V be a vector space of 
dimension IR I over  the field K. Let V d denote  @d V, the dth tensor product  of V. 
d = IDI. Let el, e2 . . . . .  eIn I be a basis for V. To each f ~ F ,  we can assign an 

e r = efo ) @ el(2) @" �9 �9 @ er(d ), 

which is a tensor. The set of tensors S = {e r : f  e F} forms a basis for the tensor 
product  V d. Define for any g e G, P(g)e~ = egf. Thus P(g)  is a permutat ion 
opera tor  relative to the basis S since it permutes  the tensors in S by way of the 
action of g on the functions. Let  )r : G -~ K be a character of G. Even though this 
opera tor  theoretic formulation was developed by Williamson for characters of 
unit degree, this was extended by Merris [21] to characters of higher degrees. 
Define an opera tor  T ~  which we shall call a symmetry opera tor  as follows: 

1 
T ~  = - ~  ~cE x ( g ) P ( g ) .  
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Let  us consider the subspace V~ of V d spanned by all tensors Sx = 
{e)~: W(f)  = x ~ K} where W(f)  is defined in Sect. 2.2. Let  the restrictions of the 
operators  T ~  and P(g) to the space V~ be T~G x and Px (g), respectively. Thus one 
can define a weighted permutat ion opera tor  with the weight W, denoted as Pw (g), 
and a weighted symmetry  opera tor  with the weight W denoted as T w'x by 

Pw (g) = 0 xPx (g) 
x E K  

r ~ ' * =  | xT~ ~ 
x ~ K  

where @ denotes finite direct sum with respect to the associated subspaces V~ 
and x 's  vary over  the elements of F. It can be seen that if one considers a 
matrix representat ion of Pw(g) then 

tr Pw (g) = Z (g) W(f)  
/ 

where the sum is taken over  all f for which gf = f and tr denotes the trace of the 
operator .  In this set up Williamson and Merris proved the following theorem for 
characters of unit degree and higher degrees, respectively. 

Theorem 1: 

1 P 

Thus 

1 
tr T w'x = ~ - ~ g ~  g ( g ) t r  (Pw(g)) 

1 
: E x(g) E wife.  

f 

We now extend the concept of the cycle index of a group defined in Sect. 2.2 to the 
cycle index of a group with character X as 

1 

v b l ~ b 2  where .~ ~ ~. 2 �9 �9 �9 has the same meaning as in the usual cycle index. Then it can be 
shown by theorem 1 that 

tr T~ 'x =PXG(Xk-3. ~, wk(r)). 
r c R  

tr T w'x is a generating function for patterns if X is the character of the identity 
representat ion since each pat tern contains exactly one identity representation. 
Each pat tern  which is a G-equivalence class of F contains the set of functions 
which are equivalent under  the action of G. Thus each pat tern transforms in 
general as a reducible representat ion of G which can be broken down into a direct 
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sum of irreducible representations, tr T w'x with character X is a generating 
function for the irreducible representation whose character is X contained in the 
pattern with the appropriate weight. 

5. Generating Functions for Gel'land States 

In general, for an n-particle problem the symmetric group is S~. Consider D as the 
set of these n particles and R as the possible spin states. Then each spin 
configuration of n-particles can be considered as a map from D to R. The group Sn 
divides the set of all maps from D to R into patterns. Each pattern contains 
exactly one identity representation of Sn. The spin configurations contained in 
each pattern form a reducible representation of Sn which decomposes into 
irreducible representations of Sn. These irreducible representations are precisely 
the generalized Young tableau or Gel 'fand states formed by the possible spin 
states of the particles. This can be seen from the correspondence of unitary groups 
and symmetric groups. Consequently, Gel ' land states contained in each pattern 
can be generated by the operator theoretic formulation outlined in Sect. 4. 

Let G be the symmetric group Sn. Let w (r)'s be the weights of spin states in the set 
,W,x W,x R. Then tr T a  , with T~ defined as in Sect. 4 with the character X generates the 

Gel ' land states formed by the spin states with the Young diagram associated with 
the irreducible representation whose character is X. With G = S~, X being the 
character associated with the irreducible representation [A] where A is the 
partition (A1, A2 . . . . .  Ap) it can be seen that tr T w is the S-function {A}. This 
indeed independently verifies that S-functions defined in Sect. 3 are the generat- 
ing functions of the Gel 'fand states. 

Let us illustrate with examples. Consider a 3-particle problem which exhibits 3 
spin states whose weights are a 1, a2 and oL3, respectively. Let us find the Gel ' land 
states associated with these spin states and the irreducible representation [2, 1] of 
53. 

p [2' 1] = ~ [ 2 X  ~ I 2X 3] G 

~w,[2,1] tr ~ 6  ={ala2a3; : "}=~[2(a~+a2+a3)z--2(a 3 +az3 +a3)]3 

2 " 2 2 2 2 
: O g  10/2 -~- OL 1OL 2 - I - a 2  O ' 2  -~- OL 20 /3  -~" O1~ 10~ 3 -[-OL 10~3 q- 2Ce 10~2Oe3 . 

The Gel ' land states thus generated are shown in Fig. 5. 

Fig. 5. The possible Gel'fand states of a particle possessing 3 spin states which correspond to the 
partition (2, 1) 
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Another  nontrivial example which illustrates the generation of Gel ' fand states 
would be the Gel ' fand states associated with 4 particles with 3 spin states 
corresponding to the partition (3, 1). 

p[3,1] = ~[3x 4 + 6x 2x2 - 6x4 --  3x 2] O 

,-r, W,[2,1 ] tr * c  = {ala2a3; : " '} 

__ l [ 3 ( a l  + a 2  + 0 / 3 ) 4  + 6 ( a  1 + 0 / 2  + a 3 )  2 ( a  1 2 + 0 / 2 + 0 / 3  ) 2  2 

_6(a4 4 4 2 + 0 / 2  + 0 / 3 )  ]" + 0 / 2  + a 3 ) _ 3 ( a  1 2 2 2 

This on simplification yields 

3 --  3 - -  3 3 3 - -  3 - -  2 2 - -  2 2 
0/ 10/2 "5-0/ 10/3 -/-0/10/2 + 0 / 2 0 / 3  +O/10 /3  -r- 0/20/3 -1-0/10/2 -I-0/ 10/3 

2 2 2 2 2 
+0/20/3 + 2 0 / 1 0 / 2 0 / 3 + 2 0 / 1 0 / 2 0 / 3 + 2 0 / 1 0 / 2 0 / 3 -  

T h e  total number  of tableaus can also be obtained by replacing every xk by IRI in 
the cycle index of G with the appropriate character. In this case it is 

113 �9 34+6 �9 32. 3 - 6  �9 3 - 3  �9 32] = 15. 

The Gel 'fand states thus generated are shown in Fig. 6. The Gel 'fand states shown 
in Figs�9 4, 5 and 6 can also be obtained by the canonical basis set procedure (see 
Paldus [5]). The total number  of all possible Gel 'fand states associated with a 
partition of n and the symbols 0/1, a2 . . . . .  0/n can be obtained by the following 
formula described by Matsen [32]. 

1-[/"t (Pl P2'"') 
N(0/1, 0/2 . . . . .  0/n ; P l ,  P2 . . . .  ) = Ilhl 

i,i 

where 

~ (P I,P2,-'-) = n n + l  n + 2  

n - 1  n . . .  

n - 2 n - 1  . . .  

g 

For the example [2, 1] in S3 the total number  of Gel 'fand states as obtained by this 
formula, is 

3 - 4 . 2  
N ( a l ,  a2,0/3; 2, 1 ) - - -  8. 

3 
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Fig. 6. The 15 Gel'fand states of a particle possessing 3 spin states which correspond to the partition 
(3, 1) 

However,  this method can give only the total number  of Gel 'fand states associated 
with a partition containing the symbols chosen from the set {~1, a2 . . . . .  o~}. 

For an electron problem the set R has only two elements since electrons are 
characterized by just two spin states, namely a and/3. The appropriate Gel 'fand 
states are thus generalized Young tableaus formed by l 's  and 2's only. If we 
associate a weight a 1 to the spin state a and a weight a2 to the spin state/3, then all 
the S-functions of the type {o~1a2; A} where (A) is the set of all partitions of the 
integer n generate the corresponding Gel 'fand states. However,  the Pauli prin- 
ciple restricts (A) to contain at most two components and hence (A) = (A 1, A 2) for 
an n-electron problem. Each pattern of spin configurations splits into irreducible 
representations which are sums of Young diagrams associated with the Gel 'fand 

N N-1 

N§ N-1 

N-2 

N-3 

I ........... I I )  

{N+2} /2  

. . . . . . . . . . . .  �9 . . . . . . . . . . . . . . .  

3 

N/2 

Fig. 7. The multiplets of spin species of N electrons for even N. The Young diagram specifies the 
irreducible representation of the corresponding spin species 
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N N-1 
r 

(N+3)/2 

................................. J 4( ~ ............. 
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s ta tes  of  a p p r o p r i a t e  weight .  F o r  example ,  the  spin  p a t t e r n  aaaaafl for  a 
6 - e l e c t r o n  p r o b l e m  spli ts  in to  a a a a a  @ aaaaafl. 

/3 

bl b 2 A class wi th  the  weight  a l a 2  c o r r e s p o n d s  to spin  ( b l - b 2 ) / 2 .  Consequen t ly ,  
when  one  g roups  Y o u n g  d i ag rams  with  var ious  spins  they  fo rm a t r i angu la r  a r ray .  
If  t he re  a re  N e lec t rons  then  all spin  s ta tes  can be  g e n e r a t e d  this way  and  they  a re  
shown in Figs. 7 and  8 for  even  and  o d d  n u m b e r s  of  e lec t rons ,  respec t ive ly .  The  
Y o u n g  d i a g r a m  specifies the  spin  species.  

Recen t ly ,  the  au tho r  [33] i n t roduced  o p e r a t o r  m e t h o d s  in m o l e c u l a r  spe c t ro sc opy  
for  d e v e l o p i n g  a m e t h o d  for  nuc lea r  spin statist ics.  
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this manuscript which improved this manuscript to a considerable extent. 
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